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Abstract: The cost of pharmaceutical development has increased dramatically in recent years, and many assorted ap-

proaches have been developed to decrease both the time and costs associated with bringing a drug to the market. Among 

these methods is the use of in silico screening of compound databases for potential new lead compounds, commonly re-

ferred to as virtual screening (VS). Virtual screening has become an integral part of the early discovery process in phar-

maceutical development, readily observed by the large number of methodologies that have been published to date. Other 

reviews have been published detailing the various types of virtual screening methods in use. This work will review some 

of the virtual screening approaches and strategies that have been attempted to identify compounds to launch medicinal 

chemistry campaigns. Understanding trends and drivers in VS should help to set expectations about how and when VS 

could be used and what it can and cannot deliver and how it can be integrated in a successful screening campaign and used 

in a complementary fashion to HTS. 
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1. INTRODUCTION 

 Increasing pressures on the pharmaceutical industry ne-
cessitate the ever increasing need to reduce attrition in later 
stages of drug discovery, improve efficiencies in the discov-
ery and development processes, lower the cost of discover-
ing and developing medicines, increase the speed of drug 
discovery cycles and produce results in the market. This is 
especially true in early drug discovery stages where the 
search for the initial lead compound and subsequent lead 
optimization begins. The efforts involved here, just by the 
nature of the drug discovery process, can have important 
consequences for therapeutic area project teams, where once 
a compound is identified (or removed) from the purview of a 
therapeutic project team it and other structurally-similar 
compounds are effectively pursued (or removed) from fur-
ther consideration. This can have serious impact downstream 
– they can either set a project team on the right course or 
completely derail them and send them on a wild goose chase. 

 At the lead identification stage, large pharmaceutical 
companies perform any of the following activities – (a) Per-
form high-throughput screening (HTS) of the entire corpo-
rate collection where many hundreds of thousands of com-
pounds are tested in the search for new drug leads, (b) Per-
form “limited HTS”, where a subset of the corporate collec-
tion (typically a dissimilarity subset or target-based com-
pound plate sets) is evaluated, (c) A known lead compound 
is taken and modified through systematic medicinal chemis-
try to “scaffold hop” to find another lead, (d) Perform virtual 
screening – either target-based (structure-based VS) or com-
pound-based (ligand-based VS) to “scaffold hop” to find 
another lead, or (e) Combinations of (a) through (d). 
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 However, as a result of the pressure to produce more with 
less, the old mantra of “screen them all”, [approach (a)], as 
the only effective screening paradigm is no longer viable. As 
it is impossible to make accurate predictions about the 
ligand-protein interactions in a high-throughput fashion, re-
searchers across the industry are currently using a variety of 
VS approaches. Furthermore, a given procedure tends to 
work better on some targets than on others in ways that are 
difficult to predict a priori. The method of choice in many 
cases appears to be defined by the familiarity and experience 
of the computational chemist to a particular computational 
method, nature and size of the compound collections, knowl-
edge of the target/biological system and the screening capac-
ity. The sections below provide an overview of selected ap-
proaches that have been attempted successfully in VS cam-
paigns.

2. STRUCTURE-BASED VIRTUAL SCREENING 

 Looking for the proverbial “needle in a haystack” is the 
fundamental issue in finding lead structures that launch suc-
cessful drug discovery campaigns. This challenge is now 
routinely addressed using virtual screening methods [1-7]. 
These methods have shown to be effective at identifying 
promising chemical entities or leads by employing relevant 
scoring schemes to identify the most promising candidates. 
An ever-increasing need in the speed of computing hardware 
and software underlies a fundamental limitation in virtual 
screening: very large chemical and conformational search-
spaces need to be explored. Nevertheless, taking advantage 
of available structural information limits these search spaces 
and allows the Structure-Based Virtual Screening (SBVS) to 
find its way to the mainstream virtual screening tools [8-10]. 
SBVS paradigm primarily relies on docking a small mole-
cule to a protein target and quantifying the resulting interac-
tion [11-14]. Promising compounds are then selected from a 
sorted list of predicted values. Post processing of the list of 
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high scoring candidates is also performed to identify struc-
tural similarities/dissimilarities responsible for the predicted 
activity. Availability of so many scoring functions highlights 
the most problematic area in SBVS: our incapability to relia-
bly calculate the binding affinity of new chemical entities. 

 The idea of docking and scoring as a virtual screening 
tool has been around since the dawn of docking methods [11, 
12, 15]. The docking challenges arise from the six degrees of 
translational and rotational freedom as well as the conforma-
tional degrees of freedom for each molecule in order to rec-
ognize another molecule. The simplest docking algorithms 
treat molecules as rigid bodies and only explore the transla-
tional and rotational space of all molecules. A further simpli-
fication made by most docking programs is keeping the re-
ceptor molecule rigid and only allowing the conformational 
space of the ligand molecule to be realized [16-19]. Many of 
the popular software such as CombiDOCK [20], DOCK [11, 
15], LUDI [21, 22], and PRO_SELECT [23] use a Clique-
search [24, 25] based approach where two rigid bodies are 
matched according to specific features in space. As an alter-
native to the Clique search approach, other software use the 
Partial Matching [26] or Pattern Recognition algorithms for 
matching features [27, 28]. 

 However, drug-like molecules are usually floppy and 
flexible docking of ligands to rigid receptors is considered to 
be a practical approach in docking [28-30]. Available soft-
ware range from simulation techniques (QXP [31], ICM [32, 
33], PRODOCK [34]), genetic algorithms [28, 29, 35-38]
(GOLD [39] and EPDOCK [38, 40]), incremental construc-
tion algorithm, (Hammerhead [13], DOCK [15] and FlexX 
[41, 42]), to conformation database methods (Flexibase/FLOG) 
[43, 44]. Other docking methods [45], which don’t fall into 
the above categories such as PRO_LEADS [46, 47], LIGIN 
[48] and other hybrid approaches, have also been proposed 
by many researchers [49-53]. Several research groups have 
been using popular docking packages such as Dock, FlexX, 
GOLD, ConsDock [54] for virtual screening of small datasets 
in a flexible fashion [5, 12, 55, 56], but none of these ap-
proaches are capable of processing a few million compounds, 
a typical pharmaceutical database, in a reasonable time 
frame. 

 Fast flexible docking with PRO_LEAD has been a very 
successful approach in screening 1.1 million compounds for 
a single target [6]. However, as the number of pharmaceuti-
cally interesting targets [6, 14] and drug-like databases grow 
[52, 57], much faster docking methods are needed to respond 
to the avalanche of data. In other words, a balance between 
accuracy (searching the conformational space) and speed has 
to be evaluated and achieved in order to take advantage of 
SBVS. On one hand, docking software such as FRED (Fast 
Rigid Exhaustive Docking), a high throughput structure-
based virtual screening tool for finding leads by using a set 
of high resolution ligand-protein complexes, are routinely 
used. The ultimate challenge to tools like FRED, as a lead 
hunter used in virtual screening, will be measured by its ca-
pability of enriching the final list of compounds in compari-
son to the random selections and its speed. On the other 
hand, work is ongoing to not only flex a potential ligand, but 
also account for the flexibility of the receptor site (FlexE 
[58], a modified version of docking program FlexX, to 

model receptor flexibility based on crystallographic struc-
tures and the Induced Fit within the Glide [59, 60] docking 
software where it models the conformation of the protein 
when it binds with the ligand). Treating explicitly the recep-
tor flexibility is computationally expensive and could worsen 
the result [45], and hence would make this approach a less 
desirable method for high throughput virtual screening. De-
spite this recent methods such as fast structure-based screen-
ing [61], that utilizes docking and 2D QSAR for rapid scor-
ing is reportedly thousand times faster than regular docking 
and still demonstrates a comparable performance [62-68]. 

 Schapira et al. demonstrated that high-throughput dock-
ing (using ICM [33]) could be used to rapidly identify and 
prioritize lead thyroid hormone antagonists that differ from
known ligands. Antagonist molecules of different chemo-
types discovered in this work illustrates the power of recep-
tor-based virtual screening and demonstrates that diverse 
chemical space can be narrowed using structural information. 
Further lead optimization of Thyroid Receptor (TR) antago-
nists enhanced the property of the discovered chemical enti-
ties [65]. In another investigation [69], ligands were docked 
into an averaged ensemble of crude homology models of the 
target protein. Improved homology models were generated 
using a distance-dependent pair potentials derived from PDB 
ligand-protein complexes. The modeled receptors were ranked 
and selected based on the evaluation of the interactions be-
tween the ligands and the generated pockets. Force Field 
minimizations were then applied to the final models. Ulti-
mately, application of this approach to 46 protein–ligand 
complexes, taken from the Protein Data Bank (PDB), suc-
cessfully produced near-native binding-site geometries. 

 Vangrevelinghe and co-workers [70] have identified a 
substituted indoloquinazoline compound as a novel inhibitor 
of protein kinase CK2 by virtual screening of a 400 000-

compound library against a homology model of human CK2. 
In this method pharmacophoric knowledge along with multi-
ple scoring (consensus scoring) was applied to enrich the 
final hit list. The IC50 of the best compound is reported to be 
of 80 nM. This report clearly shows that large-scale database 
docking procedures in combination with scoring and filtering 
processes can be useful lead identification procedures. In 
another example, the crystal structure of cathepsin D was 
used to select the building blocks for a combinatorial library 
synthesis. As a result, the library yielded potent inhibitors 
(Ki = 9-15 nM) of cathepsin D. The success of these studies 
clearly demonstrates the power of coupling combinatorial 
chemistry and structure-based design (docking) [71]. Fur-
thermore, this also points to the advantage that VS ap-
proaches have over HTS, where evaluation of virtual com-
pound libraries such as the combinatorial libraries in the 
above example that could be synthesized is possible. 

 Böhm et al. [21, 72, 73] described that random screening 
provided no suitable lead structures in a search for novel 
inhibitors of the bacterial enzyme DNA gyrase. However, 
relying on detailed 3D structural information of the targeted 
ATP binding site, an approach combining four key tech-
niques (1) in silico screening for potential low molecular 
weight inhibitors, (2) a biased high throughput DNA gyrase 
screen, (3) validation of the screening hits by biophysical 
methods, and (4) a 3D guided optimization process, was at-
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tempted. When in silico screening was performed, the initial 
data set containing 350 000 compounds was reduced to 3000 
molecules. Testing these 3000 selected compounds in the 
DNA gyrase assay provided 150 hits (5-64 g/mL) clustered 
in 14 classes. Seven classes (phenols, 2-amino-triazines, 4-
amino-pyrimidines, 2-amino-pyrimidines, pyrrolopyrimidi-
nes, indazoles, and 2-hydroxymethyl-indoles) were validated 
as true, novel DNA gyrase inhibitors that act by binding to 
the ATP binding site located on subunit B. The 3D guided 
optimization provided highly potent DNA gyrase inhibitors, 
e.g., the 3,4-disubstituted indazole (0.03 g/mL) being 10 
times more potent DNA gyrase inhibitor than novobiocin.  

 Paiva et al. [74] compared VS and HTS of the Merck 
chemical collection, using FLOG [43, 44] docking software, 
against the tuberculosis target dihydrodipicolinate reductase. 
The HTS hit-rate was outperformed by 30 fold by VS. The 
top hits from docking and HTS had Ki values of 7.2 and 35 
uM, respectively. Having a rigid receptor site and a rigid 
bioactive molecule improves the accuracy of docking meth-
ods, and also enhances the chance of a successful virtual 
screening effort. Furthermore, enzymes that are inhibited 
with rigid ligands are great candidates for fast rigid docking 
methods [75]. 

 ICM has been used to identify new antagonists of human 
retinoic acid receptor-alpha even when the relevant crystal 
structure was not available. New antagonists were discov-
ered with ICM by virtual screening the Available Chemicals 
Directory (ACD) to a model of retinoic acid receptor-alpha 
structure [76]. In another scenario, Internal Coordinates 
Mechanism (ICM) flexible docking procedure was success-
ful in identifying potential binders of the RNA hairpin HIV-
1 TAR RNA when a subset of the ACD was screened [77]. 

 DOCK has also been used with various databases to iden-
tify potential inhibitors of kinesin and thymidilate synthase 
[78, 79]. In another investigation, Aronov et al. screened a 
small virtual library and discovered inhibitors of the hypo-
xanthine-guanine-xanthine phosphoribosyl transferase [80]. 
Others [81, 82] have also been successful in finding novel 
inhibitors of FXa and thrombine respectively using docking 
and scoring methods. 

 Moreover, in another instance, Burkhard et al. [83] em-
ployed the molecular docking computer program SAN-
DOCK [84] (the X-ray structure of uncomplexed FKBP, a 
member of the immunophilin family, was used to provide a 
template with the binding pocket) to identify more than 20 
low micromolar novel FKBP inhibitors. In another investiga-
tion, EUDOCK was used to virtual screen a chemical data-
base (ACD) to identify inhibitors (4 out of 21 inhibitors had 
IC50 of 100uM or better) of farnesyltransferase (FT) with 
zinc present in the active site [85]. 

3. LIGAND-BASED VIRTUAL SCREENING 

Crystal structures of potential drug targets are blueprints 
for the binding site that needs to be occupied by a ligand. 
Consequently, with structure-based virtual screening (SBVS) 
it is easier to rationalize, perk interest and gather buy-in from 
project teams to launch and execute a SBVS campaign. Many 
pharmaceutical companies invested heavily in structure-
based tools in the 80s and with the advent of HTS and com-

binatorial chemistry in the 90s, it appeared that ligand-based 
virtual screening (LBVS) had become passé as the industry 
focused upon SBVS methods. Now with automation making 
inroads into macromolecular crystallography in the 00s, 
thereby enabling parallel crystallization trials to solve crystal 
structures of difficult protein targets, protein crystallography 
is quickly establishing itself as a high-throughput technique 
in its own right and bringing SBVS more frequently to the 
forefront in early-stage drug discovery efforts. However, a 
majority of the therapeutic targets still remain difficult to 
crystallize. There is an immense landscape of proteins that 
remains to be solved and drugged. One of the biggest gaps is 
with integral membrane proteins and one such class of mem-
brane proteins, G-protein coupled receptors (GPCRs), are 
targets for more than 50% of the current drugs on the market 
and make up the majority of validated targets in biomedical 
research [86]. Furthermore, using structure-based methods to 
understand functional activity such as agonism, partial ago-
nism, antagonism and inverse agonism is not relatively 
straight forward. Sometimes effective binders still lack func-
tional activity and understanding this, using structure-based 
methods remains a challenging problem. Hence compound 
screening based on ligand-based methods continues to re-
main indispensable for a bulk of targets and the primary ap-
proach for drug discovery projects over the past several dec-
ades. The selection of compounds that are screened depends 
upon the type, throughput and capacity of the assay. The 
libraries that are selected to screen are based on a variety of 
approaches [87] such as HTS of the entire corporate collec-
tion, subset screening based on random selection, dissimilar-
ity based selection, filtered collections based on “drug like 
properties”, target-based plate sets such as kinase libraries, 
and finally “cherry-picking compounds” based on ligand-

based virtual screening approaches.  

 A well-known principle that is often used in searching for 
active compounds is that “similar compounds have similar 
activities”. While not uniformly true, due to the underlying 
differences in the nature of the activity landscapes, it still 
holds in enough cases that similarity based searching has 
become a well-accepted way of finding additional active 
compounds based on a known lead, hit, or series of hits. 
However, similarity can be measured in a variety of ways. 
And like beauty, similarity is in the eyes of the beholder. 
Ideally one would like to measure similarity through the 
"eyes of the receptor". Here examples are used to illustrate 
some of the widely used LBVS methods and processes that 
define a successful LBVS campaign. These examples are by 
no means exhaustive and represent only a subset of LBVS 
techniques used and are discussed within the context of the 
current literature and some recent trends and developments. 

Methods & Applications 

 There are a variety of LBVS methods that have been de-
veloped and applied to select compounds from a database for 
screening in a particular assay. These methods typically vary 
in the molecular representation that is used to describe com-
pounds, but essentially perform comparative molecular simi-
larity analysis of compounds. The methods also vary in the 
use of either a known active compound, and/or a set of active 
compounds and/or a set of active and inactive compounds, to 
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select compounds from the database and the similarity indi-
ces used.  

 One of the most chemically intuitive and widely used 
LBVS technique is similarity searching based on the 2D 
chemical structure of an active compound [88]. Substructure 
searching based on the active compound is also a form of 
similarity searching. Typically with similarity searching, 
databases of compounds are represented as bit string repre-
sentations or molecular-fingerprints. Bit positions in the fin-
gerprint representation usually encode for the presence or 
absence of a structural fragment. In similarity analysis, the 
overlap between bit patterns in corresponding fingerprints is 
quantified using various similarity coefficients such as the 
Tanimoto coefficient.  

 Using molecular fingerprints and similarity values, it was 
suggested that 85% of compounds that have a Tanimoto co-
efficient value of 0.85 or greater relative to an active com-
pound should also be active [89]. However, using different 
data sets, it was recently reported that at a similarity value of 
0.85 or greater only about 30% of compounds identified 
were also active [90]. Thus the relevance of the similarity 
threshold is influenced by the method used and the dataset 
under investigation. Nevertheless, similarity searching is 
usually the first method of choice for any LBVS campaign. 

 Several other molecular representations, in addition to 
fingerprint representations, have been used to perform simi-
larity searching. These include topological descriptors, de-
scriptors based on surface-dependent properties, descriptors 
based on molecular properties, etc. Combinations of these 
descriptors and structural fragments have also been success-
fully used in LBVS. For example, a mini-fingerprint (MFP) 
composed of three numerically encoded 2D descriptors and 
about 32-40 structural keys was used to identify compounds 
that contained similar activities of some drug-like molecules 
for endothelin A antagonists, 1-adrenergic receptor ligands, 
some serine protease inhibitors and fibrinogen receptor an-
tagonists [91, 92]. In general, MFPs displayed the best over-
all performance at a Tanimoto cutoff value between 0.65 and 
0.7. Within this “similarity interval”, MFPs have, on aver-
age, an approximately 60% chance of correctly identifying 
all molecules with biological activity similar to a query com-
pound and recognize only 1-2% false positives. For virtual 
screening calculations, the authors used a threshold value of 
0.6 as an MFP-specific Tanimoto similarity criterion. 

 LBVS techniques that involve the transformation of con-
tinuous descriptors into a binary format based on statistical 
medians and subsequent definition of a simplified chemistry 
space have also been used successfully [93, 94]. Identifica-
tion of consensus positions of specific compound sets in 
these spaces, and iterative adjustments of the dimensionality 
of the descriptor spaces is then performed in order to dis-
criminate compounds that share similar activity from others. 

 Indices such as the molecular equivalence indices [95] 
classify a molecule with respect to a class of structural fea-
tures or topological shapes such as its cyclic system or a set 
of functional groups. These indices have been shown to iden-
tify interesting features [96] based on the topological shape 
of a molecule and its set of functional groups that are 

strongly linked with activity. A data-shaving study [97] has 
exploited the presence and absence of a subset of these indi-
ces in both active and inactive compounds to “shave” off or 
deprioritize compounds similar to inactives from LBVS. 
Similarity searching was shown to improve when com-
pounds predicted to be inactive were deprioritized.  

 Reduced molecular graph representations [98, 99] have 
been used for similarity searching and identifying active 
compounds. Typically in graphs, atoms are represented as 
nodes and bonds as edges. In reduced graphs, nodes can rep-
resent, for example ring systems connected by functional 
groups. Thus reduced graphs condense molecular representa-
tions by emphasizing features. Similarity searching with re-
duced graphs [100] performed quite comparably to Daylight 
fingerprints but identified more structurally diverse mole-
cules (broader coverage) having similar activity.  

 Cluster analysis has been applied for a variety of chemin-
formatic problems. Typically Jarvis-Patrick clustering has 
been the method of choice for non-hierarchical clustering 
and Ward’s clustering for agglormerative-hierarchical clus-
tering. Recently, reports where hierarchical clustering has 
been used as a LBVS tool [101] have been reported. For ex-
ample, when compounds were selected for testing based on 
nearest-neighbor analysis using hierarchical clustering meth-
ods, average hits rates of 15% or more were observed that 
were significantly greater than the primary hit rate.  

 Cell-based partitioning in low-dimensional chemistry 
spaces using BCUT descriptors [102, 103] and hit-directed 
nearest neighbor searching in these chemistry spaces has also 
been widely used as a LBVS technique. BCUTs are molecu-
lar descriptors that capture features that are critical for pro-
tein-ligand interactions and compounds that have similar 
BCUT values are hence likely to be similar in activity. Sev-
eral examples of use of BCUT based searching in a retro-
spective and prospective fashion have been reported in the 
literature [104-107]. 

 Statistical partitioning methods such as recursive parti-
tioning (RP), a decision tree based method, have also been 
used as a LBVS technique. The approach is similar to a divi-
sive-hierarchical clustering but divides data along the deci-
sion tree, typically using a two-state (yes/no – present/absent) 
decision based on molecular descriptors. In a study with 
monoamine oxidase inhibitors [108], RP models yielded a 
15-fold enrichment in hit-rate over random selection and 
with HTS data sets, up to 10-fold enrichments [109, 110]. 

 Many methods exist for performing LBVS based on 3-D 
molecular similarity. Lemmen and Lengauer [111] provide a 
comprehensive review of most of the methods in use today, a 
large class of which utilizes some form of vector-based rep-
resentation of 3-D molecular features such as 3-D pharma-
cophores [112] and various types of 3-D shape descriptors 
[113]. The components of these vectors can be binary, inte-
ger, categorical, or continuous. Most 3-D methods, however, 
involve some type of direct alignment of the molecules being 
considered. 

 LBVS using pharmacophoric queries has also been used 
extensively. Pharmacophores are derived from conforma-
tional explorations of a single active or sets of active and/or 
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inactive compounds. Based on the complexity of the phar-
macophore generated, databases of compound collections are 
searched to identify virtual hit lists. These methods vary in 
terms of increasing complexity, information content and suc-
cess rates [112, 114]. 

 The bulk of the 3-D methods utilize some form of field-
based function to represent the fields or pseudo-fields, which 
can be either continuous or discrete, surrounding molecules. 
Examples include “steric,” electrostatic potential, and lipo-
philic fields [115]. Several workers have also developed a 
field-based methodology for directly aligning molecules 
based upon their electric fields [116, 117], which differs from 
the usual scalar potential fields that are typically matched, 
but these approaches have only been implemented as discrete 
procedures. 

 Simplified 3D representations of multiple conformations 
of ligands using clustering techniques that are used in data-
mining have been reported recently. For example, Jenkins et
al. [118] reported that similarity searching with feature point 
pharmacophores enriches actives taken from HTS datasets as 
well as those obtained from MDL Drug Data Report (MDDR) 
activity classes such as COX2 & HIV-RT inhibitors, 5-
HT3A & D2 ligands and retinoids. Significantly, this method 
finds novel scaffold classes compared to 2D (Daylight, 
MACCS & PipelinePilot molecular fingerprints [119]) & 3D 
similarity (pharmacophore triplets) methods in the datasets 
studied.  

 Topomer similarity searching [120, 121] has been used as 
a predictor of similarity in biological activity. A topomer is 
an invariant 3D representation of a molecular fragment 
[122], derived from its 2D topology by rules that produce 
absolute coordinates for its constituent atoms. In a prospec-
tive study [123], with 308 compounds in 13 assays the 
LBVS hit rate averaged over all assays was 39%, signifi-
cantly greater than the control hit rate of 15%.  

 Shape-based LBVS using ROCS [119, 124] (Rapid Over-
lay of Chemical Structures) to find new scaffolds for small 
molecule inhibitors of the ZipA-FtsZ protein-protein interac-
tion, was reported recently [125]. The shape comparisons 
were made relative to the crystallographically determined 
bioactive conformation of a HTS hit. The use of ROCS led 
to the identification of a set of novel, weakly binding inhibi-
tors that were missed using similarity-based approaches such 
as ISIS 2D fingerprints.  

 Molecular shape information has also been described in 
bit string formats for similarity searching based on 3D con-
formations of test compounds [126]. In these cases, com-
pounds were represented as bit strings [127] capturing a set 
of shapes and sometimes pharmacophore-like features such 
as donors, acceptors, aromatic rings, etc. Similarities to 
knowns actives and inactives were then used to search data-
bases and score candidate compounds. 

 Recently there has been significant interest in the appli-
cation of support vector machines for LBVS [128-130]. 
Typically SVMs have been used as a classification and activ-
ity prediction tool. SVMs project compound collections into 
a space where molecules are represented as vectors and a 
hyperplane is then constructed based on a linear combination 

of vectors to differentiate compound sets. Using this ap-
proach substrates and non-substrates for different isoforms 
of UDP-glucuronosyltransferase were classified in a study 
[131] and was found to be superior (greater than 80% predic-
tion accuracy) to PLS discriminant analysis and Bayesian 
neural networks.  

 Self-organizing maps and neural nets have also been used 
as classifiers and LBVS tools. For example, SOM clustering 
[132] was used to classify compounds based on screening 
data of the National Cancer Institute and in combinations 
with 2D fingerprints neural nets have also been used to vir-
tual screen compound collections to nearly 90% accuracy in 
identifying CNS active compounds and mining for CYP-3A4 
inhibitors [133-135].  

4. PRE-FILTERING CORPORATE COLLECTIONS 

 Pre-filtering corporate collections before a VS run is per-
formed on a regular basis for a variety of reasons. Pre-
filtering eliminates compounds that have undesirable proper-
ties such as those that contain reactive or toxic functional 
groups [52], those that do not have drug like character [136], 
have limited aqueous solubility [137], are likely to have un-
favorable ADME properties like stability, permeability, ab-
sorption, CNS penetration, etc., and those that will not be 
considered as initial starting points for a therapeutic project 
by medicinal chemists because of synthetic issues [138] or 
unfavorable IP position, even if they were active in the bio-
logical assay. Pre-filtering also helps enrich collections with 
desired compounds and hence improves hit-rates. The com-
plexity of the filtering functions ranges from simple rule-
based functions to neural network algorithms or combina-
tions thereof [139, 140]. 

5. VIRTUAL HIT-LISTS: DATA-FUSION VS DATA-

AGGREGATION 

 In SBVS, when shortcomings of scoring functions was 
realized researchers started to combine scoring functions 
ranked the final docked list of compounds [141]. The ra-
tional behind the consensus scoring was to perform better 
than the worst individual scoring function in the chosen sub-
set of the scoring functions. For example in a case study us-
ing angiogenin (a potent inducer of angiogenesis) [142], the 
accuracy of the HTS result was improved by virtual screen-
ing of the corresponding chemical libraries and selecting hits 
by HTS/VS consensus. In conjunction with HTS of the Na-
tional Cancer Institute Diversity Set and ChemBridge DI-
VERSet E (~18,000 compounds total), VS was performed 
with two flexible library docking/scoring methods, DockVi-
sion/Ludi and GOLD. Analysis of the results revealed that 
dramatic enrichment of the HTS hit rate can be achieved by 
selecting compounds in consensus with one or both VS func-
tions. For example, HTS hits ranked as top 2% by GOLD 
included 42% of the true hits, but only 8% of the false posi-
tives; this represents a six fold enrichment over the HTS hit 
rate. Notably, the HTS/VS method was effective in selecting 
out inhibitors with micromolar dissociation constants typical 
of leads commonly obtained in primary screens [142]. 

 Similarly, one can combine several diverse and alike ap-
proaches in selecting the final list [143, 144]. The concept of 
data fusion is concerned about the “how” and “what” meth-
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ods should be combined to provide the highest enrichment 
factor in a given system. Could docking methods be adding 
extra values to more traditional ligand-based approaches? 
Should these methods be combined sequentially or in paral-
lel?  

 Since it is difficult to establish which method may per-
form best given a particular instance, data fusion methods, 
also referred to as consensus scoring, have been recently 
employed for merging virtual screening results from differ-
ent similarity methods. Successful data fusion approaches 
could reduce the uncertainty involved in selecting the appro-
priate VS method. Given a set of plausible VS results from 
various methods for a particular query, it is unlikely that a 
user will know a priori which method’s results are most ap-
propriate. In addition, useful data fusion approaches could 
potentially result in a merged result that is superior to any of 
the individual input method results and thus is able to extract 
useful information from all input lists, including inferior 
methods. Among the published fusion methods, the Sum-
rank method has been shown to be among the most success-
ful [145-149].  

 In LBVS, it is well-known that chemistry spaces are rep-
resentation dependent. As a result, relationships among 
compounds in one chemistry space are not necessarily pre-
served in another chemistry space. Thus, an intrinsic chemis-
try space does not exist [150], and this has important conse-
quences with regard to the distribution of compounds in 
these spaces. For example, it is entirely possible that clusters 
of compounds in one chemistry space may become uni-
formly spread out in another chemistry space and vice-versa. 
Therefore, Nearest Neighbor (NN) relationships may not be 
the same in the different spaces. These confounding factors, 
namely that different chemistry-space representations lead to 
different distributions of compounds and that significant 
violations of the similarity principle occur, have led to the 
realization that the quest for the best computational tech-
nique in NN searching of compound databases may be a fu-
tile exercise. Several researchers in the field have hence de-
veloped and applied a variety of novel computational tools to 
mitigate some of these representation-dependent and similar-
ity or distance-biased views of chemistry space [104, 150, 
151]. 

 Holliday et al. [148] studied different types of similarity 
coefficients and data fusion methods to combine and opti-
mize similarity measures between molecules. Data fusion 
methods such as Sum-rank, best-in-n fusion, best single etc. 
were used to combine and compare several similarity coeffi-
cients to obtain an overall estimate, which was later used for 
similarity searching. Results indicate that combinations such 
as Sum-rank fusion method improved hit-rates but no single 
combination gave a consistently high performance. 

 Raymond et al. [152] developed a new consensus scoring 
approach for merging the results of different virtual screen-
ing methods based on conditional probabilities. This tech-
nique was experimentally evaluated using several ligand-
based virtual screening methods and compared to two varia-
tions of the Sum-rank fusion method where the conditional 
probability (CP) method performed as well or better than the 
Sum-rank methods. The individual VS methods chosen for 

the study were Daylight and BCI fingerprints, 2D MCS and 
3D MCS, Tripos’s dbtop and Open Eye’s ROCS. These re-
sults indicate that consensus scoring enriches the hit-rate or 
the number of active compounds retrieved with respect to the 
best individual methods on average.  

 Post-processing virtual screening hit-lists with data ag-
gregation methods have also been reported in the literature. 
In a seminal study, Sheridan and Kearsely [151] presented 
results from a retrospective analysis of various historical 
virtual screening studies with in-house methods on several 
different therapeutic targets. They concluded that the effec-
tiveness of any similarity method varies greatly from one 
biological assay to another in a way that is difficult to predict 
a priori. Also, any two methods tend to select different sub-
sets of actives from a database, so it is better to use several 
search methods where possible.  

 Shanmugasundaram et al. [104] recently described a data-
aggregation strategy used in a prospective fashion at Phar-
macia for identifying compounds for follow-up screening 
based on several ligand-based virtual screening hit-lists. This 
approach took explicitly into account different representa-
tions of chemistry space and identified compounds for fol-
low-up screening that are likely to provide the best overall 
coverage of the chemistry spaces considered. The representa-
tions included 3-D, 2-D, 2-D topological BCUTs (2-DT) and 
molecular fingerprints derived from substructural fragments. 
The LBVS hit-lists that were obtained had little overlap. 
Moreover, in all of the four chemistry space representations, 
a minimum of 3- to 4-fold enrichment in actives over ran-
dom screening was observed. The set of assays examined in 
this work covered a range of therapeutic-area projects, from 
CNS to anti-fungal to antibacterial and contained both cell-
based and target-based assays, some of which were func-
tional assays and some of which were binding assays. 

6. ANALYSIS OF VS RESULTS – ENRICHMENT VS
COVERAGE  

 Typically in a virtual screening campaign, after the selec-
tion of the virtual hit-lists and post-processing of these vir-
tual hit-lists, a selection is made to finalize the list of com-
pounds that are actually ordered, plated and tested in the 
biological assay of interest. Activity values of these com-
pounds in the biological screen are then reported back. Two 
different measures, enrichment and coverage, are widely 
used to assess the virtual screening results.

 Enrichment can be defined as the ratio of the proportion 
of actives in the VS campaign to the proportion of actives 
obtained in a primary screen or random selection of com-
pounds. This gives a measure of how much better the VS 
campaign performed when compared to a normal primary 
screen or just a random selection of compounds. 

 Coverage is defined as the ratio of the number of actives 
in the VS to the number of actives in the entire collection, 
expressed as a percent. This gives a crude measure of how 
many different active compounds (or series) were identified 
or missed. 

 Typically it has been noted that enrichment and coverage 
behave in an approximately complementary fashion. As the 
similarity threshold increases, enrichment increases but cov-
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erage decreases and vice versa. Use of these measures and 
the appropriate selection of the similarity threshold is where 
the “art of VS campaign” lies. 

SUMMARY

In several studies, different VS procedures have yielded 
different subsets of active compounds for the same biologi-
cal target. Furthermore, a given procedure tends to work 
better on some targets than on others in ways that are diffi-
cult to predict a priori. Thus, based upon a substantial 
amount of studies in the literature and from the arguments 
advanced earlier concerning the lack of invariance of differ-
ent representations and their associated chemistry spaces, it 
does not appear that any single approach to VS can une-
quivocally identify compounds that are similar to active 
compounds obtained in screening studies. Thus, several re-
searchers have taken different approaches to combine the 
virtual hit-lists obtained from different VS methods.  

 Using combinations of VS methods provides a practical 
approach to balance enrichment of hit-rates and coverage of 
chemistry space. Although it might be extremely satisfying 
to see high enhancements in hit-rates compared to primary 
screening rates (such as 100-fold or 200-fold), the ultimate 
success of any VS approach is the ability to cover different 
chemical classes of molecules and the ability to provide op-
tions to therapeutic area project teams. There is always a 
nagging fear (the sword of Damocles) hanging over any pro-
ject team’s head that the next blockbuster drug was actually 
a close analog of a compound in the corporate collection, but 
was a borderline hit which the project team had overlooked. 
The ability to combine multiple VS approaches, lowers that 
risk of not finding the next Lipitor or a close analog of it in 
your screen. 

REFERENCES 

[1] Lewis, R. A.; Pickett, S. D.; Clark, D. E. In Reviews in Computa-
tional Chemistry; Lipkowitz, K. B.; Boyd, D. B. Ed.; Wiley-VCH: 

New York, 2000, Vol. 16, pp. 1-51. 
[2] Walters, W. P.; Ajay; Mucko, M. A. Curr. Opin. Chem. Biol., 

1999, 3, 384. 
[3] Podlogar, B. L.; Muegge, I.; Brice, L. J. Curr. Opin. Drug Discov. 

Devel., 2001, 4, 102. 
[4] Martin, E. J.; Blaney, J. M.; Siani, M. A.; Spellmeyer, D. C.; 

Wong, A. K.; Moos, W. H. J. Med. Chem., 1995, 38, 1431. 
[5] Stahl, M.; Rarey, M.; Klebe, G. In Bioinformatics; Lengauer, T. 

Ed.; Wiley-VCH: New York, 2001, Vol. 2, pp. 137-170. 
[6] Waszkowycz, B.; Perkins, T. D. J.; Sykes, R. A.; Li, J. IBM Syst. 

J., 2001, 40, 360. 
[7] Lahana, R. Drug Discov. Today, 1999, 5, 43. 

[8] Greer, J. E.; J. W.; Baldwin, J. J.; Varney, M.D. J. Med. Chem., 
1994, 37, 1035. 

[9] Bohacek, R. S.; McMartin, C.; Guida, W.C. Med. Res. Rev., 1996,
16, 3. 

[10] Shoichet, B. K.; Bussiere, D.E. Curr. Opin. Drug Discov. Devel., 
2000, 3, 408. 

[11] Kuntz, I. D. Science, 1992, 257, 1078. 
[12] Shoichet, B. K.; Stroud, R. M.; Santi, D.V.; Kuntz, I.D.; Perry, K. 

M. Science, 1993, 259, 1445. 
[13] Welch. W.; Ruppert. J.; Jain, A. N. Chem.  Biol., 1996, 3, 449. 

[14] Gruneberg, S.; Stubbs, M. T.; Kelebe, G. J. Med. Chem., 2002, 45,
3588. 

[15] Kuntz, I. D.; Blaney, J. M.; Oatley, S. J.; Langridge, R.; Ferrin, T. 
E. J. Mol. Biol., 1982, 161, 269-288. 

[16] Muegge, I.; Rarey, M. In Reviews in Computaional Chemistry,
Lipkowitz, K. B.; Boyd, D. B. Ed. Wiley-VCH: New York, 2001,

Vol. 17, pp. 1-60. 

[17] Wermuth, C. G. The Practice of Medicinal Chemistry, Academic 

Press: San Diego, 1999.
[18] Grootenhuis, P. D.; Kollman, P. A.; Seibel, G. L.; DesJarlais, R.L.; 

Kuntz, I. D. Drug Des., 1990, 5, 237. 
[19] Allen, F. H.; Bellard,S.; Brice, M.D.; Cartwright, B.A.; Doubledy, 

H.; Higgs, H.; Hummelink-Peters, T.; Kennard, O.; Motherwell, 
W.D.S.; Rodger, J.R.; Watson, D.G. Acta Crystallogr., 1979, B35,

2331. 
[20] Sun, Y.; Ewing, T. J. A.; Skillman, A. G.; Kuntz, I. D. Combi-

DOCK: J. Comput. Aided Mol. Des., 1998, 12, 597. 
[21] Böhm, H.-J. J. Comput. Aided Mol. Des., 1992, 6, 593. 

[22] Böhm, J. H. J. Comput. Aided Mol. Des., 1992, 6, 61. 
[23] Murray, C. W.; Clark, D. E.; Auton, T.R.; Firth, M. A.; Li, J.; 

Sykes, R. A.; Waszkowycz, B.; Westhead, D. R.; Young, S. J. 
Comput. Aided Mol. Des., 1997, 11, 193. 

[24] Kuhl, F. S.; Crippen, G.M.; Friesen, D. K. J. Comput. Chem., 1984,
5, 24. 

[25] Bron, C.; Kerbosch, J. Finding All Cliques of an Undirected Graph. 
Communi. Associ. Comput. Machin., 1973, 16, 575. 

[26] Fischer, D.; Norel, R.; Wolfson, H.; Nussinov, R. Struct. Funct. 
Genet., 1993, 16, 278. 

[27] Fischer, D.; Lin, L. S.; Wolfson, H.; Nussinov, R. A. J. Mol. Biol., 
1995, 248, 459. 

[28] Oshiro, C. M.; Kuntz, I. D.; Dixon, J. S. J. Comput. Aided Mol. 
Des., 1995, 9, 113. 

[29] Clark, K. P.; Jay, J. Comput. Chem., 1995, 16, 1210. 
[30] Leach, A. R. Molecular Modelling :Principles and Applications,

Addison Wesley Longman Limited: Essex England, 1996.
[31] McMartin, C.; Bohaceck, R. S. J. Comput. Aided Mol. Des.,1997,

11, 333. 
[32] Abagyan, R.; Tortov, M.; Kuznetsov, D. J. Comput. Chem., 1994,

15, 488. 
[33] Totrov, M.; Abagyan, R. Proteins, 1997, 1, 215. 

[34] Trosset, J. Y.; Scheraga, H. A. J. Comput. Chem., 1999, 20, 412. 
[35] Judson, R. In Reviews in Computational Chemistry, Lipkowitz, K. 

B.; Boyd, D. B. Ed. Wiley-VCH: New York, 1997, Vol. 10, pp. 1-
73. 

[36] Jones, G.; Willett, P.; Glen, R.C. J. Comput. Aided Mol. Des., 
1995, 9, 532. 

[37] Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. 
E.; Belew, R. K.; Olson, A. J. J. Comput. Chem., 1998, 19, 1639. 

[38] Gehlhaar, D. K.; Verkhivker, P.A.; Rejto, D.B.; Fogel, L.J.; Feer, 
S.T. In Docking Conformationally Flexible Small Molecules into a 

Protein Binding Site Through Evolutionary Programming. Pro-
ceeding of the Fourth Annual Conference on Evolutionary Pro-

gramming; McDonnell, J. R.; Reynolds, R.G.; Fogel, D. B. Ed.; 
MIT Press, Cambridge, MA.; 1995, pp. 615-627. 

[39] Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. J. Mol. 
Biol., 1997, 267, 727. 

[40] Gehlhaar, D. K.; Verkhivker, G. M.; Rejto, P. A.; Sherman, C. J.; 
Fogel, D. B.; Fogel, L. J.; Freer, S. T. Chem. Biol., 1995, 2, 317. 

[41] Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. J. Mol. Biol., 1996,
261, 470. 

[42] Rarey, M.; Kramer, B.; Lengauer, T. J. Comput. Aided Mol. Des., 
1997, 11, 369. 

[43] Miller, M. D.; Kearsley, S. K.; Underwood, D. J.; Sheridan, R. P. J. 
Comput. Aided Mol. Des., 1994, 8, 153. 

[44] Kearsley, S. K.; Underwood, D. J.; Sheridan, R. P.; Miller, M. D. J. 
Comput. Aided Mol. Des., 1994, 8, 565. 

[45] Abagyan, R.; Totrov, M. Curr. Opin. Chem. Biol., 2001, 5, 375. 
[46] Baxter, C. A.; Murray, C. W.; Clark, D. E.; Westhead, D. R.; 

Eldridge, M. D. Struct. Funct. Genet., 1998, 33, 367. 
[47] Baxter, C. A.; Murray, C. W.; Waszkowycz, B.; Li, J.; Sykes, R. 

A.; Bone, R. G. A.; Perkins, T. D. J.; Wylie, W. J. Chem. Inf. 
Comput. Sci., 2000, 40, 254. 

[48] Sobolev, V.; Wade, R.C.; Vriend, G.; Edelman, M. Proteins  
Struct. Funct. Genet., 1996, 25, 20. 

[49] Wang, J.; Kollman, P. A.; Kuntz, I. D. Proteins Struct. Funct. 
Genet., 1999, 36, 1. 

[50] Hoffmann, D.; Kramer, B.; Washio, T.; Steinmetzer, T.; Rarey, M.; 
Lengauer, T. J. Med. Chem., 1999, 42, 4422. 

[51] Broughton, H. B. J. Mol. Grap. Model., 2000, 18, 247. 
[52] Walters, W. P.; Stahl, M. T.; Murcko, M. A. Drug Discov. Today, 

1998, 3, 160. 



1166 Mini-Reviews in Medicinal Chemistry, 2006, Vol. 6, No. 10 Jalaie and Shanmugasundaram

[53] David, L.; Luo, R.; Gilson, M. K. J. Comput. Aided Mol. Des., 

2001, 15, 157. 
[54] Paul, N.; Rognan, D. ConsDock: Proteins Struct. Funct. Genet., 

2002, 47, 521. 
[55] Kramer, B.; Rarey, M.; Lengauer, T. Proteins Struct. Funct. 

Genet., 1999, 37, 228. 
[56] Stahl, M.; Rarey, M. J. Med. Chem., 2001, 44, 1035. 

[57] Martin, Y. C. Perspec. Drug Discov. Des., 1997, 7/8, 159. 
[58] Claussen, H.; Buning, C.; Rarey, M.; Lengauer, T. J. Mol. Biol., 

2001, 308, 377. 
[59] Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, 

J. J.; Mainz, D. T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.; 
Perry, J. K.; Shaw, D. E.; Francis, P.; Shenkin, P. S. J. Med. Chem., 

2004, 47, 1739. 
[60] Halgren, T. A.; Murphy, R. B.; Friesner, R. A.; Beard, H. S.; Frye, 

L. L.; Pollard, W. T.; Banks, J. L. J. Med. Chem., 2004, 47, 1750. 
[61] Yoon, S.; Smellie, A.; Hartsough, D.; Filikov A. J. Comput. Aided 

Mol. Des., 2005, 19, 483. 
[62] Kitchen, D. B.; Decornez, H.; Furr, J. R.; Bajorath, J. Nat. Rev. 

Drug Discov., 2004, 3, 935. 
[63] Rizzo, R. C.; Wang, D.-P.; Tirado-Rives, J.; Jorgensen, W. L. J. 

Am. Chem. Soc., 2000, 122, 12898. 
[64] Rosenfeld, R. J.; Goodsell, D.S.; Musah, R.A.; Morris, M. G.; 

Goodin, D.B.; Olson, A.J. J. Comput. Aided Mol. Des., 2003, 17,
525-36. 

[65] Schapira, M.; Raaka, B. M.; Das, S.; Fan, L.; Totrov, M.; Zhou, Z.; 
Wilson, S. R.; Abagyan, R.; Samuels, H. H. PNAS, 2003, 100,

7354. 
[66] Schapira, M.; Raaka, B. M.; Samuels, H. H.; Abagyan, R. In silico 

discovery of novel Retinoic Acid Receptor agonist structures. BMC 
Struc. Biol., 2001, 1, www.biomedcentral.com/1472-6807/1/1 

[67] Shoichet, B. K.; McGovern, S. L.; Wei, B.; Irwin, J. J. Curr. Opin. 
Chem. Biol., 2002, 6, 439. 

[68] Schneidman-Duhovny, D.; Nussinov, R.; Wolfson, H. J. Curr. 
Med. Chem., 2004, 11, 91. 

[69] Evers, A.; Gohlke, H.; Klebe, G. J. Mol. Biol., 2003, 334, 327. 
[70] Vangrevelinghe, E.; Zimmermann, K.; Schoepfer, J.; Portmann, R.; 

Fabbro, D.; Furet, P. J. Med. Chem., 2003, 46, 2656. 
[71] Kick, E. K.; Roe, D. C.; Skillman, A. G.; Liu, G.; Ewing, T. J.; 

Sun, Y.; Kuntz, I. D.; Ellman, J. A. Chem. Biol., 1997, 4, 297. 
[72] Böhm, H.-J.; Boehringer, M.; Bur, D.; Gmuender, H.; Huber, W.; 

Klaus, W.; Kostrewa, D.; Kuehne, H.; Luebbers, T.; Meunier-
Keller, N.; Mueller, F. J. Med. Chem., 2000, 43, 2664. 

[73] Böhm, H.-J. J. Comput. Aided Mol. Des., 1992, 6, 593. 
[74] Paiva, A. M.; Vanderwall, D. E.; Blanchard, J. S.; Kozarich, J. W.; 

Williamson, J. M.; Kelly, T. M. Biochim. Biophys. Acta Prot. 
Struct. Mol. Enz., 2001, 1545, 67. 

[75] Schulz-Gasch, T.; Stahl, M. J. Mol. Model., 2003, 9, 47. 
[76] Schapira, M.; Raaka, B. M.; Samuels, H. H.; Abagyan, R. PNAS, 

2000, 97, 1008. 
[77] Filikov, A. V.; Mohan, V.; Vickers, T. A.; Griffey, R. H.; Cook, P. 

D.; Abagyan, R. A.; James, T. L. J. Comput. Aided Mol. Des., 
2000, 14, 593. 

[78] Tondi, D.; Slomczynska, U.; Costi, M. P.; Watterson, D. M.; 
Ghelli, S.; Shoichet, B. K.Chem. Biol., 1999, 6, 319. 

[79] Aronov, A. M.; Munagala, N. R.; Kuntz, I. D.; Wang, C. C. Antim-
icrob. Agents Chemother., 2001, 45, 2571. 

[80] Aronov, A. M.; Munagala, N. R.; De Montellano, P. R.; Kuntz, I. 
D.; Wang, C. C. Biochemistry, 2000, 39, 4684. 

[81] Liebeschuetz, J. W.; Jones, S. D.; Morgan, P. J.; Murray, C. W.; 
Rimmer, A. D.; Roscoe, J. M. E.; Waszkowycz, B.; Welsh, P. M.; 

Wylie, W. A.; Young, S. C.; Martin, H.; Mahler, J.; Brady, L.; 
Wilkinson, K. J. Med. Chem., 2002, 45, 1221. 

[82] Makino, S.; Kayahara, T.; Tashiro, K.; Takahashi, M.; Tsuji, T.; 
Shoji, M. J. Comput. Aided Mol. Des., 2001, 15, 553. 

[83] Burkhard, P.; Hommel, U.; Sanner, M.; Walkinshaw, M. D. J. Mol. 
Biol., 1999, 287, 853. 

[84] Burkhard, P.; Taylor, P.; Walkinshaw, M. D. J. Mol. Biol., 1998,
277, 449. 

[85] Perola, E.; Xu, K.; Kollmeyer, T. M.; Kaufmann, S. H.; Prender-
gast, F. G.; Pang, Y. P. J. Med. Chem., 2000, 43, 401. 

[86] Drews, J. Science, 2000, 287, 1960. 
[87] Bajorath, J. Nat. Rev. Drug Discov., 2002, 1, 882. 

[88] Willett, P. In Similarity and Clustering in Chemical Information 
Systems. Research Studies: Letchworth, UK, 1987.

[89] Patterson, D. E.; Cramer, R. D.; Ferguson, A. M.; Clark, R. D.; 

Weinberger, L. E. J. Med. Chem., 1996, 39, 3049. 
[90] Martin, Y. C.; Kofron, J. L.; Traphagen, L. M. J. Med. Chem., 

2002, 45, 4350. 
[91] Xue, L.; Stahura, F. L.; Godden, J. W.; Bajorath, J. J. Chem. Inf. 

Comput. Sci., 2001, 41, 394. 
[92] Xue, L.; Godden, J. W.; Bajorath, J. Environ. Res., 2003, 14, 27. 

[93] Godden, J. W.; Furr, J. R.; Xue, L.; Stahura, F. L.; Bajorath, J. J. 
Chem. Inf. Comput. Sci., 2004, 44, 21. 

[94] Godden, J. W.; Stahura, F. L.; Bajorath, J. J. Med. Chem., 2004,
47, 5608. 

[95] Xu, Y.-J.; Johnson, M. J. Chem. Inf. Comput. Sci., 2001, 41, 181. 
[96] Xu, Y.-J.; Johnson, M. J. Chem. Inf. Comput. Sci., 2002, 42, 912. 

[97] Schreyer, S. K.; Parker, C. N.; Maggiora, G. M. J. Chem. Inf. 
Comput. Sci., 2004, 44, 470. 

[98] Gillet, V. J.; Willett, P.; Bradshaw, J. J. Chem. Inf. Comput. Sci., 
2003, 43, 338. 

[99] Barker, E. J.; Gardiner, E. J.; Gillet, V. J.; Kitts, P.; Morris, J. J. 
Chem. Inf. Comput. Sci., 2003, 43, 346. 

[100] Harper, G.; Bravi, G. S.; Pickett, S. D.; Hussain, J.; Green, D. V. S. 
J. Chem. Inf. Comput. Sci., 2004, 44, 2145. 

[101] Stanton, D. T.; Morris, T. W.; Roychoudhury, S.; Parker, C. N. J. 
Chem. Inf. Comput. Sci., 1999, 39, 21. 

[102] Pearlman, R. S.; Smith, K. M. Perspect. Drug Discov. Des., 1998,
9-11, 339. 

[103] Pearlman, R. S.; Smith, K. M. J. Chem. Inf. Comput. Sci., 1999, 39,
28. 

[104] Shanmugasundaram, V.; Maggiora, G. M.; Lajiness, M. S. J. Med. 
Chem., 2005, 48, 240. 

[105] Gao, H. J. Chem. Inf. Comput. Sci., 2001, 41, 402. 
[106] Beno, B. R.; Mason, J. S. Drug Discov. Today, 2001, 6, 251. 

[107] Pirard, B.; Pickett, S. D. J. Chem. Inf. Comput. Sci., 2000, 40,
1431. 

[108] Rusinko, A.; Young, S. S.; Drewry, D. H.; Gerritz, S. W. Comb. 
Chem. High Throughput Screen, 2002, 5, 125. 

[109] Jones-Hertzog, D. K.; Mukhopadhyay, P.; Keefer, C. E.; Young, S. 
S. J. Pharmacol. Toxicol. Methods, 1999, 42, 207. 

[110] Van Rhee, A. M.; Stocker, J.; Printzenhoff, D.; Creech, C.; 
Wagoner, P. K.; Spear, K. L. J. Comb. Chem., 2001, 3, 267. 

[111] Lemmen, C.; Lengauer, T. J. Comput. Aided Mol. Des., 2000, 14,
215. 

[112] Güner, O. F. Pharmacophore: Perception, Development, and Use 
in Drug Design. IUL Biotechnol. Ser: International University 

Line, 2000.
[113] Mansfield, M. L.; Covell, D. G.; Jernigan, R. L. J. Chem. Inf. 

Comput. Sci., 2002, 42, 259. 
[114] Van Drie, J. H. Pharmacophore discovery: A critical review. In 

Computational Medicinal Chemistry for Drug Discovery; Bultinck, 
P. Ed.; Marcel Dekker Inc., New York, N.Y. 2004, pp. 437-460. 

[115] Du, Q.; Arteca, G. A.; Mezey, P. G. J. Comput. Aided Mol. Des., 
1997, 11, 503. 

[116] Petke, J. D. J. Comput. Chem., 1993, 14, 928. 
[117] Hodgkin, E. E.; Richards, W. G. Int. J. Quantum Chem., 1987, 14,

105. 
[118] Jenkins, J. L.; Glick, M.; Davies, J. W. J. Med. Chem., 2004, 47,

6144. 
[119] Cramer, R. D.; Jilek, R. J.; Guessregen, S.; Clark, S. J.; Wendt, B.; 

Clark, R. D. J. Med. Chem., 2004, 47, 6777. 
[120] Cramer, R. D.; Jilek, R. J.; Andrews, K. M. J. Mol. Graph. Model., 

2002, 20, 447. 
[121] Jilek, R. J.; Cramer, R. D. J. Chem. Inf. Comput. Sci., 2004, 44,

1221. 
[122] Cramer, R. D.; Poss, M. A.; Hermsmeier, M. A.; Caulfield, T. J.; 

Kowala, M. C.; Valentine, M. T. J. Med. Chem., 1999, 42, 3919. 
[123] Haigh, J. A.; Pickup, B. T.; Grant, J. A.; Nicholls, A. J. Chem. Inf. 

Model., 2005, 45, 673. 
[124] Rush, T. S. III; Grant, J. A.; Mosyak, L.; Nicholls, A. J. Med. 

Chem., 2005, 48, 1489. 
[125] Grant, J. A.; Gallard, M. A.; Pickup, B. T. J. Comput. Chem., 1996,

17, 1653. 
[126] Putta, S.; Lemmen, C.; Beroza, P.; Greene, J. J. Chem. Inf. Comput. 

Sci., 2002, 42, 1230. 
[127] Byvatov, E.; Schneider, G. J. Chem. Inf. Comput. Sci., 2004, 44,

993. 



Virtual Screening: Are We There Yet? Mini-Reviews in Medicinal Chemistry, 2006, Vol. 6, No. 10    1167

[128] Byvatov, E.; Fechner, U.; Sadowski, J.; Schneider, G. J. Chem. Inf. 

Comput. Sci., 2003, 43, 1882. 
[129] Warmuth, M. K.; Liao, J.; Raetsch, G.; Mathieson, M.; Putta, S.; 

Lemmen, C. J. Chem. Inf. Comput. Sci., 2003, 43, 667. 
[130] Sorich, M. J.; Miners, J. O.; McKinnon, R. A.; Winkler, D. A.; 

Burden, F. R.; Smith, P. A. J. Chem. Inf. Comput. Sci., 2003, 43,
2019. 

[131] Rabow, A. A.; Shoemaker, R. H.; Sausville, E. A.; Covell, D. G. J. 
Med. Chem., 2002, 45, 818. 

[132] Keseru, G. M.; Molnar, L.; Greiner, I. Comb. Chem. High 
Throughput Screen., 2000, 3, 535. 

[133] Keseru, G. M. J. Comput. Aided Mol. Des., 2001, 15, 649. 
[134] Molnar, L.; Keseru, G. M. Bioorg. Med. Chem. Lett., 2002, 12,

419. 
[135] Gao, H.; Shanmugasundaram, V.; Lee, P. Pharm. Res., 2002, 19,

497. 
[136] Lajiness, M. S.; Maggiora, G. M.; Shanmugasundaram, V. J. Med. 

Chem., 2004, 47, 4891. 
[137] Muegge, I. Med. Res. Rev., 2003, 23, 302. 

[138] Ajay, A.; Walters, W. P.; Murcko, M. A. J. Med. Chem., 1998, 41,
3314. 

[139] Clark, R. D.; Strizhev, A.; Leonard, J. M.; Blake, J. F.; Matthew, J. 
B. J. Mol. Graph. Model., 2002, 20, 281. 

[140] Jenkins, J. L.; Kao, R. Y. T.; Shapiro, R. Proteins, 2003, 50, 81. 

[141] Raymond, J. W.; Jalaie, M.; Bradley, M. J. Chem. Inf. Comput. 
Sci., 2004, 44, 601. 

[142] Gohlke, H.; Klebe, G. J. Med. Chem., 2002, 45, 4153. 
[143] Stahl, M.; Rarey, M.; Klebe, G. Screening of Drug Databases. In 

Bioinformatics, Lengauer, T. Ed.; Wiley-VCH: New York, 2001,
Vol. 2, pp. 137-170. 

[144] Belkin, N. J.; Cool, C.; Croft, W. B.; Callan, R. K. Effect of Multi-
ple Query Representations on Information System Performance. In 

Proceedings of SIGIR, 1993, pp 339-346. 
[145] Raymond, J. W.; Willett, P. J. Comput. Aided Mol. Des., 2002, 16,

59. 
[146] Salim, N.; Holliday, J. D.; Willett, P. J. Chem. Inf. Comput. Sci., 

2003, 43, 435. 
[147] Whittle, M.; Willett, P. J. Chem. Inf. Comput. Sci., 2003, 43, 449. 

[148] Maggiora, G. M.; Shanmugasundaram, V. Molecular similarity 
measures. In Methods in Molecular Biology, Bajorath, J. Ed.; 

Clifton: NJ, 2004, Vol. 275, pp. 1-50. 
[149] Sheridan R. P.; Kearsley, S. K. Drug Discov. Today, 2002, 7, 903. 

[150] Raymond, J. W.; Jalaie, M.; Bradley, M. P. J. Chem. Inf. Comput. 
Sci., 2004, 44, 601. 

Received: January 18, 2006 Revised: May 08, 2006 Accepted: May 09, 2006 




